Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of a 7 nicotinic receptors and internalization of NMDA
نویسنده
چکیده
Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan, Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA, Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan, and Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Japan Correspondence Dr Hachiro Sugimoto, Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan. E-mail: [email protected]
منابع مشابه
Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors.
Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hyd...
متن کاملNicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons.
Donepezil is a potent and selective acetylcholinesterase (AChE) inhibitor developed for the treatment of Alzheimer's disease. To elucidate whether donepezil shows neuroprotective action in addition to amelioration of cognitive deficits, we examined the effects of donepezil on glutamate-induced neurotoxicity using primary cultures of rat cortical neurons. A 10-min exposure of cultures to glutama...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملNovel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors.
The neuroprotective properties of bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate-induced excitotoxicity were investigated in primary cultured cerebellar granule neurons (CGNs). Exposure of CGNs to 75 mum glutamate resulted in neuronal apoptosis as demonstrated by Hoechst staining, TUNEL, and DNA fragmentation assays. The bis(7)-tacrine treatment (0.01-1 mum)...
متن کاملMesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF
Mesenchymal stem cells (MSC) provide therapeutic effects in experimental CNS disease models and show promise as cell-based therapies for humans, but their modes of action are not well understood. We previously show that MSC protect rodent neurons against glutamate excitotoxicity in vitro, and in vivo in an epilepsy model. Neuroprotection is associated with reduced NMDA glutamate receptor (NMDAR...
متن کامل